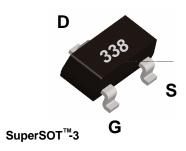
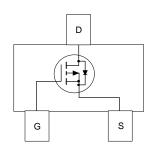
FDN338P


General Description


SuperSOT[™]-3 P-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMCIA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

- -1.6 A, -20 V, $R_{DS(ON)} = 0.13~\Omega$ @ $V_{GS} = -4.5~V$ $R_{DS(ON)} = 0.18~\Omega$ @ $V_{GS} = -2.5~V$.
- Industry standard outline SOT-23 surface mount package using proprietary SuperSOTTM-3 design for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.

Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless other wise noted

Symbol	Parameter		FDN338P	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage - Continuous		±8	V
I _D	Drain/Output Current - Continuous		-1.6	A
	- Pulsed		-5	
$P_{\scriptscriptstyle D}$	Maximum Power Dissipation	(Note 1a)	0.5	W
		(Note 1b)	0.46	
T_J, T_{STG}	Operating and Storage Temperature Range		-55 to 150	°C
THERMA	L CHARACTERISTICS			·
R_{BJA}	Thermal Resistance, Junction-to-Ambient (Note 1a)		250	°C/W
₹ _{⊌IC}	Thermal Resistance, Junction-to-Case (Note 1)		75	°C/W

FDN338P

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHAR	ACTERISTICS	·					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$		-20			V
Δ BV _{DSS} / Δ T _J	Breakdown Voltage Temp. Coefficient	I _D = -250 μA, Referenced to 25 °C			-28		mV/°C
l _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, \ V_{GS} = 0 \text{ V}$				-1	μA
			T _J = 55°C			-10	μA
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 8 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
	ACTERISTICS (Note)	- 1 - 22			ı		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$		-0.4	-0.6	-1	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	I _D = -250 μA, Referenced to 25 °C			2		mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_{D} = -1.6 \text{ A}$			0.115	0.13	Ω
20(014)			T _J =125°C		0.16	0.22	1
		$V_{GS} = -2.5 \text{ V}, I_{D} = -1.3 \text{ A}$			0.155	0.18	1
D(ON)	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, \ V_{DS} = -5 \text{ V}$		-2.5			Α
D _{ES}	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_{D} = -1.6 \text{ A}$			3		S
DYNAMIC (CHARACTERISTICS	1 30 5			I		
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, \ V_{GS} = 0 \text{ V},$ f = 1.0 MHz			405		pF
Coss	Output Capacitance				170		pF
C _{rss}	Reverse Transfer Capacitance				45		pF
SWITCHING	G CHARACTERISTICS (Note)			•	•		
D(on)	Turn - On Delay Time	$V_{DD} = -5 \text{ V}, \ I_{D} = -1 \text{ A},$ $V_{GS} = -4.5 \text{ V}, \ R_{GEN} = 6 \Omega$			6.5	13	ns
· T	Turn - On Rise Time				20	35	ns
D(off)	Turn - Off Delay Time				31	50	ns
f	Turn - Off Fall Time				21	35	ns
Q_{q}	Total Gate Charge	$V_{DS} = -5 \text{ V}, I_{D} = -1.6 \text{ A},$ $V_{GS} = -4.5 \text{ V}$			6	8.5	nC
Q_{gs}	Gate-Source Charge				0.8		nC
Q_{gd}	Gate-Drain Charge				1.3		nC
RAIN-SO	URCE DIODE CHARACTERISTICS AND M	IAXIMUM RATINGS		•			•
s	Maximum Continuous Drain-Source Diode Forward Current					-0.42	Α
V _{SD}	Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_S = -0.42 \text{ A} \text{ (Note)}$			-0.7	-1.2	V	

Note

Typical $\rm R_{\rm g,Jk}$ using the board layouts shown below on $\,$ FR-4 PCB in a still air environment :

a. 250°C/W when mounted on 0.02 in² pad of 2oz Cu.

b. 270°C/W when mounted on a 0.001 in² pad of 2oz Cu.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

^{1.} R_{guA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{guC} is guaranteed by design while R_{guC} is determined by the user's board design.